

3 DI counters, 2 PWM outputs, Modbus TCP protocol, WiFi module WJ165

Figure 1 Appearance of WJ165 module

Product features:

- 3-channel switch input, 2-channel switch output
- •Each DI channel can be used as a counter or frequency measurement
- •Each DO channel can independently output PWM signals
- Supports Modbus TCP communication protocol
- Built in web page function, which can query the level status through the web page
- Output status can be set through the webpage
- •Wide power supply range: 8~32VDC
- •High reliability, easy programming, and easy application
- •Standard DIN35 rail installation, convenient for centralized wiring
- $\bullet \textsc{Users}$ can set module IP addresses and other parameters on the webpage
- •Low cost, small size, modular design
- Dimensions: 79 x 69.5x 25mm

Typical applications:

- Flow meter pulse counting or flow measurement
- •LED lighting control or motor control
- •Intelligent building control, security engineering and other application systems
- •Ethernet industrial automation control system
- •Industrial site signal isolation and long-distance transmission
- Equipment operation monitoring and control
- •Measurement of sensor signals
- Industrial camera status monitoring and control
- IoT switch signal acquisition
- **Product Overview:**

The WJ165 product is an IoT and industrial Ethernet acquisition module that enables transparent data exchange between sensors and networks. Sensor data can be forwarded to the network, or data from the network can be forwarded to the sensor.

Figure 2 Internal Block Diagram of WJ165 Module

The WJ165 series products include power conditioning, switch quantity acquisition, transistor output, and WiFi interface communication. The communication method adopts MODBUS TCP protocol. TCP is a transport layer based protocol that is widely used and a reliable connection oriented protocol. Users can directly set module IP addresses, subnet masks, etc. on the webpage. Can be used for monitoring and controlling the operation of sensor devices.

The WJ165 series products are intelligent monitoring and control systems based on microcontrollers. The module IP address, subnet mask, and other configuration information set by the user are stored in non-volatile memory EEPROM.

The WJ165 series products are designed and manufactured according to industrial standards, with strong anti-interference ability and high reliability. The working temperature range is -45 $^{\circ}$ C to+80 $^{\circ}$ C.

Function Introduction:

The WJ165 remote I/O module can be used to measure three switch signals and has two switch outputs. Can be used as a 3-channel counter or 3-channel frequency measurement,

It can also output two PWM signals.

1. Switching signal input and output

3-channel switch signal input, can be connected to wet contact signal, please add pull-up resistor to dry contact; 2-channel switch signal output with open collector output.

2、 Communication Protocol

Communication interface: WiFi network interface. Can connect to WiFi within the local area network.

Communication protocol: MODBUS TCP protocol is adopted to achieve industrial Ethernet data exchange. It can also communicate with modules through TCP sockets.

Network cache: 2K bytes (for both sending and receiving)

Communication response time: less than 10mS.

3, anti-interference

There is a transient suppression diode inside the module, which can effectively suppress various surge pulses and protect the module.

Product model:
WJ165 – <u>WiFi</u>
Form of antenna
W external antenna
N built-in antenna
X suction cup antenna
Communication interface
WiFi: Output as WiFi network interface
WJ165 General Parameters:
(Typical @+25 °C, Vs is 24VDC)
Input type: switch input, 3-channel (DI0~DI2).
Low level: Input<1V High level: Input 3.5~30V
Frequency range 0-20KHz
Counting range 0-0xFFFFFFF
Input resistance: 30K Ω
Output type: open collector output, voltage 0~30V, maximum load current 30mA, 2-channel (DO0~DO1).
PWM frequency 100~1000Hz, duty cycle 0~100%
Communication: MODBUS TCP communication protocol
Web page: Supports web access module and web page setting module parameters.
Interface: WiFi network interface.
Working power supply:+8~32VDC wide power supply range, with internal anti reverse and overvoltage protection
circuits
Power consumption: less than 1W
Working temperature: -45~+80 °C
Working humidity: 10~90% (no condensation)
Storage temperature: -45~+80 °C
Storage humidity: 10~95% (no condensation)
Isolation voltage resistance: non isolated
Dimensions: 79 mm x 69.5mm x 25mm

Pin definition and wiring:

Pin	name	Description	Pin	name	Description
ono	PW+	Positive end of power supply	fivo	DO0	Channel 0 switch signal
one			live		output terminal
two	GND	Negative terminal of power supply,	aiv	DI2	Channel 2 switch signal input
two		signal common ground	SIX		terminal
three	INIT	Set communication parameters		DI1	Channel 1 switch signal input
three			seven		terminal
farm	DO1	Channel 1 switch signal output	aiah4	DI0	Channel 0 switch signal input
lour		terminal	eignt		terminal

Note: The pins with the same name are internally connected

Figure 5 Wiring diagram of WJ160 module

Firstly, configure the WJ165 module through your mobile phone

.⊪ 中国移动 夺 ✔ 设置	^{11:17} 无线局域网		1. Put the module into AP mode
我的网络 wifi8 其他网络		२ ○	 (1) Short circuit the 3rd pin (Initiat) and 4th pin (GND) of the module, and then turn on the power. (2) Open the wireless LAN on your phone or Go to "Settings → WLAN" and connect to the WiFi named "wifi 8".
•11 中国移动 4G	10:57		The factory password for this module is: 12345678, then "Join".
输入"wif	i840:F5:20:07:79:00"的	回密码	
取消	输入密码	加入	
密码			
您也可以将 iPhc 联系人的 iPhone	nne靠近任何已接入此网络且已 a、iPad或 Mac,来访问此无线	∃添加您为 €局域网。	

■■ 中国移动 4G 10:57 192.168.4.1 wifi840:F5:20:07:79:00	ğ 💼 ,	2
〈 〉 登录	取消	S
配置模块参数		v t
在线查看数据		t]
Json批量配置		t
16:25	5G 🔲,	3
wifi8C4:5B:BE:59:19:8A		
< → 登录	取消	
─ DI设置 ————————————————————————————————————		
DI电平状态是否取反		
DI电平状态正常显示	\$	
DI计数边沿		
DI上升沿计数	\$	
DIO每转脉冲数		
1000		
DI1每转脉冲数		
1000		
DI2每转脉冲数		
1000		
DIO滤波时间		
0		
DI1滤波时间		
0		
DI2滤波时间		
0		
DIO脉冲倍率		

2. Enter the module webpage.

After connecting to the WiFi of the module, wait a few seconds and it will automatically redirect to the built-in webpage of the module, as shown in the left figure. If the phone cannot automatically redirect, you can also open the mobile browser and enter the website 192.168.4.1 to log in.

Click on the configuration module parameter link to enter the configuration interface

3. Parameter settings

- (1) Whether the DI level state is reversed: If the read state is opposite to the actual state, you can set the DI level state to be reversed and output.
- (2) DI counting edge: Different edge trigger counts can be set, and the default rising edge count can be used normally. If set to count both rising and falling edges, the count value will be twice the actual number of pulses.
- (3) DI0~DI2 pulses per revolution: The number of pulses per revolution for DI. If you need to measure the speed, please set it according to the actual parameters. The module will automatically convert the rotational speed per minute.
- (4) DI0~DI2 filtering time: The value range is 0 to 65535.

If it is 0, it means no filtering; The other values represent the filtering time, in mS (milliseconds). If the DI input point is a mechanical switch or mechanical relay, it is recommended to set the filtering time to 20mS.

- (5) DI0~DI2 pulse rate: Set the actual value corresponding to each pulse, default to 1, and convert the actual engineering value to the actual pulse based on this value. For example, if each pulse is 0.005mm and can be set to 0.005, then the actual engineering value is 0.005 * number of pulses.
- (6) Default frequency for PWM power on: Set the default frequency for PWM power on
- (7) PWM0-PWM1 default duty cycle when powered on: The duty cycle ratio of the default output when

WAYJU	Ν
TECHNOLOG	GY

DI1脉冲倍率

DI2脉冲倍率

PWM上电默认频率

PWM0上电默认占空比

PWM1上电默认占空比

DO1DO0上电默认电平

WiFi设置

WiFi账号

WiFi密码

工作方式

.....

TCP Server

本地IP设置

手动设置IP

192.168.0.5

192.168.0.1

255.255.255.0

默认网关

子网掩码

本地端口

23

IP地址

0

w

1

1

1000

5000

5000

11

Signal	Isolators	k	Conditioners

PWM0 and PWM1	are turned on.
---------------	----------------

(8) DO1DO0 default power on level: The default output level value for DO0 and DO1 when powered on.

4. Configure module WiFi parameters

Please modify the following parameters according to actual needs:

- (9) WiFi account: Connect to the WiFi coverage in this area.
- (10) WiFi password: Fill in the WiFi password, if already connected, do not re-enter.
- (11) Local IP settings: If only MQTT protocol is used, it can be set to automatically obtain IP. If you want to access data through Modbus TCP or web pages, it is recommended to manually set it to a fixed IP address to facilitate communication between the IP address and the module.
- (12) IP address: Set the IP address of the module, which must be in the current WiFi network segment and not the same as the IP address of other devices in the local area network. For example, if the IP of the WiFi router is 192.168.0.1, the IP of the module can be set to 192.168.0.7
- (13) Default gateway: The gateway of the module, fill in the IP address of the current WiFi router. For example, if the IP address of a WiFi router is 192.168.0.1, simply fill in this IP address
- (14) Subnet Mask: The subnet mask of the module. If there is no cross network segment, fill in the default value of 255.255.255.0

(15) Local port: The communication port of the

Signal	Isolators	k	Conditioners
_	,		

TECHNOLOGY	
自动上报时间间隔	
0	
计数变化自动上报	
不上报 ◇	
模块名称	
C45BBE59198A	
MOTT设置	
打开MQTT功能	
MOTT服务器地址	
broker.emqx.io	
MOTT Client ID	
C45BBE59198A	
MQTT用户名	
MQTT密码	
MQTT端口	
1883	
MQTT发布主题	
pub	
	1
MQTT发布时间间隔	
2000	
DI状态变化自动MQTT发布	T.
否	
MQTT订阅主题	
sub	
保友并重白	
バリアナシロ Mact地址:C4:5B:BE:59:19:8A:版本:V1.3	

module, and MODBUS communication generally uses port 502.

- (16) Remote server IP address: The remote server IP, TCP client, and UDP server that needs to be connected to.
- (17) Remote server port: The port of the server.
- (18) Automatic reporting interval: The time interval for the module to report data at regular intervals, set to 0 to indicate that data will not be automatically reported.
- (19) Automatic reporting of count changes: Report a data point when there is a change in the count, which can only be used in situations where the data changes very slowly, otherwise a large amount of data will be sent.
- (20) Module Name: User defined name for a module to distinguish between different modules.
- (21) MQTT settings: If MQTT communication is used, the MQTT function needs to be turned on.
- (22) MQTT server address: Fill in the URL of the MQTT server,

For example: brokere.emqx.io

If the local server IP is 192.168.0.100, you can write 192.168.0.100

- (23) Please fill in the MQTT client ID, username, password, port, publish topic, subscribe topic, and other parameters according to the requirements of the MQTT server. The QoS of MQTT is 0 and cannot be modified.
- (24) MQTT publishing interval: The time interval in milliseconds during which the module automatically publishes data to the MQTT server. Set to 0 to cancel the scheduled publishing function.
- (25) Automatic MQTT publishing for DI status changes: default is' No '. This function is only suitable for situations where the pulse changes very slowly. If any channel has a pulse change, it will publish data to the MQTT server once. It is not recommended to set it to "Yes" for situations with rapid pulse changes.

Otherwise, there will be a large amount of data sent.

5. Save parameters

	After completing the parameter settings, click the save and restart button, and the module will save the parameters and automatically restart.
16:36 III 5G III	6. View data online on the webpage
192.168.4.1 wifi8C4:5B:BE:59:19:8A < > 登录 取消 ○ DI状态	Click on the online data viewing link on the module's homepage to enter the data viewing interface. As shown in the left figure.
DI0:0, DI1:0, DI2:0	also obtain JSON format data by accessing the link 192.168.0.5/readData.
脉冲计数器 DI0:0 DI1:0 DI2:0	The DI state represents the input level state, which can also be the flipped state.
脉冲频率(Hz) DI0:0 DI1:0 DI2:0	The pulse counter is the cumulative number of measured pulses.
脉冲时间间隔(秒)	The pulse frequency is the number of pulses per second.
DI0:0 DI1:0 DI2:0 实际工程值	The pulse time interval is the time interval between the two most recent pulses. The unit is (seconds)
DI0:0 DI1:0 DI2:0	
转速 DI0:0 DI1:0 DI2:0	The actual engineering value is obtained by multiplying the value of the pulse counter by the pulse multiplier set on the webpage. Used for automatically converting actual flow, length, production, and other data.
	The rotational speed is obtained by converting the frequency and the number of pulses per revolution. Used for automatically converting actual revolutions per minute.

Page 9 of 23

16:36I 5G 🗩	7. Batch setting parameters
192.168.4.1 wifi8C4:5B:BE:59:19:8A く 登录 取消 (''diReverse'': 0, ''diEdge'': 1, ''diPluse'': [1000, 1000,	Click on the Json Batch Configuration link on the module's homepage to enter the Batch Settings interface. As shown in the left figure. The data must be in standard JSON format, and all parameters can be set or only some parameters can be set. If there are many products to be set up, batch setting can save time
1000], "diFilter": [0, 0, 0, 0	After completing the filling, click the button Save Json data.
"diZoom": [1, 1, 1, 1], "FeReset": 1000, "FOWMADEcode", 5000	Example 1: Only changing the WiFi account password can send:
"PWM0Reset": 5000, "PWM1Reset": 5000, "DOReset": 11, "WifiSaid": "w", "workmode": 0, "setIP": 1, "ipAddress": "192.168.0.55", "gateway": "192.168.0.55", "localPort": 23, "remoteServerIp": "192.168.0.161", "remotePort": 23, "sendTime": 0, "diAutoSend": 0, "devName": "C45BBE59198A",	"WifiSsid": "w", "WifiPassword": "12345678", "setIP": 1, "ipAddress": "192.168.0.5", "gateway": "192.168.0.1", "netmask": "255.255.255.0", }
Save Json data Clear	<pre>Example 2: Only modifying MQTT parameters can send: { "setMQTT": 1, "mqttHostUrl": "broker.emqx.io", "port": 1883, "clientId": "mqtt_test_001", "username": "", "passwd": "", "topic": "mqtt_topic_001", "pubTime": 2000, "pubonchange": 0 }</pre>
Config X +	8. The module webpage can also be opened on
 ← → C □ ■ • № http://192.168.0.5/ ★ 收藏 ▼ ↓ 手机收藏夹 → 网址大全 ○ 360搜索 □ 立台 	the local area network
配置模块参数	If the module is already connected to the local WiFi, you can enter the module IP in the computer or mobile browser, such as 192,168.0.5, to open the module
<u>任线单看数据</u> Json批量配置	webpage (provided that the computer IP or mobile IP is in the same network segment as the module, and the login operation should be based on the current module IP

Modbus TCP protocol

(1) Modbus TCP data frames:

Transmission over TCP/IP Ethernet, supporting Ethernet II and 802.3 frame formats. As shown in Figure 3, the Modbus TCP data frame consists of three parts: packet header, function code, and data.

Figure 6: Request/Response of MODBUS on TCP/IP

(2) MBAP message header description:

The MBAP header (MBAP, Modbus Application Protocol, Modbus Application Protocol) is divided into 4 fields, totaling 7 bytes, as shown in Table 1.

Table	1:	MBAP	Message	Header
14010	т.	1010111	message	Iloudel

Domain	Length (B)	Description
Transmission	2 bytes	Indicate the transmission of a MODBUS query/response
identification		
Protocol Logo	2 bytes	0=MODBUS protocol
Length	2 bytes	Subsequent byte count
Unit identifier	1 byte	Identification code of remote slave station connected on
		serial link or other bus

(3) Modbus function code:

Modbus function codes are divided into three types, namely:

(1) Public Function Code: Defined function codes that ensure their uniqueness and are recognized by Modbus.org;

(2) There are two sets of user-defined function codes, namely 65-72 and 100-110, which do not require approval but do not guarantee the uniqueness of code usage. If it becomes public code, it needs to be approved by RFC;

(3) The reserved functional code, which is used by certain companies on certain traditional devices, cannot be used for public purposes.

Among the commonly used public function codes, WJ165 supports some function codes, as shown below:

Function code	name	explain

			-
01	Read Coil Status	Read coil status	1 represents high level, 0 represents low level.
03	Read Holding Register	Read and hold register	1 represents high level, 0 represents low level.
05	Write Single Coil	Write a single coil	1 indicates that the transistor is conducting, and
			0 indicates that the transistor is disconnected.
06	Write Single Register	Write a single register	1 indicates that the transistor is conducting, and
			0 indicates that the transistor is disconnected.
fifteen	Write Multiple Coils	Write multiple coils	
sixteen	Write Multiple Registers	Write multiple registers	

(4) Description of supported function codes

01 (0x01) Reading coil

In a remote device, use this function code to read the continuous status of the coil from 1 to 2000. The request PDU specifies the starting address, which is the designated first coil address and coil number. Address the coil from scratch. Therefore, addressing coils 1-16 are 0-15.

Divide the coils in the response message into individual coils based on each bit in the data field. The indication status is 1=ON and 0=OFF. The first data serves as the LSB (least significant bit) of the byte, and the subsequent coil data is arranged in ascending order to form an 8-bit byte. If the returned output quantity is not a multiple of eight, the remaining bits in the last data byte will be filled with zeros (up to the high-order end of the byte). The byte count field indicates the complete number of bytes in the data

E.	1	C .	C	1 01	1 (D 1 1		1 4	• ,	11	00000	00040
Hyami	าเค	OT.	TIINCTION	CODE III	ready	x_channe		data	register	addresses	11111330	
LAAIIII		U1	runction		, icau o	5-channe	\mathbf{D}	uata,	register	audicosco	00055	-000-0.
					/				0			

	request		response			
Field	Name	hexadecim	Field Name		hexadecimal	
		al				
	Transmissio	01		Transmission	01	
	n	00		identification	00	
	identificatio					
MBAP	n		MBAP			
message	Protocol	00	message	Protocol Logo	00	
header	Logo	00	header		00	
	length	00		length	00	
		06			04	
	Unit	01		Unit identifier	01	
	identifier					
Function code	:	01	Function code		01	
Starting address Hi		00	Byte count		01	
Starting address Lo		twenty	Output status DI7-DI0		00	
Output quantit	ty Hi	00				
Output quanti	ty Lo	08				

03 (0x03) Read hold register

In a remote device, use this function code to read the contents of consecutive blocks in the hold register. The request PDU specifies the starting register address and the number of registers. Address registers from scratch. Therefore, addressing registers 1-16 are 0-15. In the response message, each register has two bytes, with the first byte being the data high bit and the second byte being the data low bit.

request			response			
Fiel	Field Name		Fi	hexadecimal		
		al				
	Transmissio	01		Transmission	01	
	n	00		identification	00	
	identificatio					
MBAP	n		MBAP			
message	Protocol	00	message	Protocol Logo	00	
header	Logo	00	header		00	
	length	00		length	00	
		06			05	
	Unit	01		Unit identifier	01	
	identifier					
Function co	de	03	Function cod	e	03	
Starting add	Starting address Hi		Byte count		02	
Starting add	Starting address Lo		Register valu	e Hi (0x00)	00	
Register nur	nber Hi	00	Register valu	e Lo (DI7-DI0)	00	
Register nur	nber Lo	01				

Example of function code 03, read 8-channel DI data, register address 40033:

05 (0x05) Write a single coil

On a remote device, use this function code to write a single output as ON or OFF. The request PDU specifies the mandatory coil address. Address the coil from scratch. Therefore, addressing coil address 1 is 0. The constant of the coil range indicates the requested ON/OFF state. Hexadecimal value 0xFF00 requests the coil to be ON. Hexadecimal value 0x0000 requests the coil to be OFF. All other values are illegal and have no effect on the coil. The correct response is the same as a request.

For example, for function code 05, set channel DO0 to ON, which is 1, and register address 00001:

	request		response		
Field	l Name	hexadecim	Field Name		hexadecimal
		al			
	Transmissio	01		Transmission	01
	n	00		identification	00
	identificatio				
MBAP	n		MBAP		
message	Protocol	00	message	Protocol Logo	00
header	Logo	00	header		00
	length	00		length	00
		06			06
	Unit	01	1	Unit identifier	01
	identifier				

Function code	05	Function code	05
Output Address Hi	00	Output Address Hi	00
Output address Lo	00	Output address Lo	00
Output value Hi	FF	Output value Hi	FF
Output value Lo	00	Output value Lo	00

06 (0x06) Write a single register

In a remote device, use this function code to write a single hold register. The request PDU specifies the address written to the register. Address registers from scratch. Therefore, address register address 1 is 0. The correct response is the same as a request.

For example, for function code 06, set all channels DO0~DO7 to 1, hexadecimal to 0xFF, and register address 40001:

request			response		
Field Name		hexadecim	Field	Field Name	
		al			
	Transmissio	01		Transmission	01
	n	00		identification	00
	identificatio				
MBAP	n		MBAP		
message	Protocol	00	message	Protocol Logo	00
header	Logo	00	header		00
	length	00		length	00
		06			06
	Unit	01		Unit identifier	01
	identifier				
Function code	e	06	Function code		06
Register Address Hi		00	Register Address Hi		00
Register Address Lo		00	Register Address Lo		00
Register value	e Hi	00	Register value Hi		00
Register value	e Lo	FF	Register value L	0	FF

15 (0x0F) Write multiple coils

On a remote device, use this function code to write multiple outputs as ON or OFF. The request PDU specifies the mandatory coil address. Address the coil from scratch. Therefore, addressing coil address 1 is 0. The constant of the coil range indicates the requested ON/OFF state. The data is converted from hexadecimal to binary and arranged in bits, with a bit value of 1 requesting the coil to be ON and a bit value of 0 requesting the coil to be OFF.

For example, for function code 15, set channel DO0 and DO1 to ON, which is 00000011, and register address 00001:

request			response		
Field	Name	hexadecim	Field Name		hexadecimal
		al			
	Transmissio	01		Transmission	01
	n	00		identification	00

	identificatio				
MBAP	n		MBAP		
message	Protocol	00	message	Protocol Logo	00
header	Logo	00	header		00
	length	00		length	00
		06	_		06
	Unit	01	_	Unit identifier	01
	identifier				
Function code	2	0F	Function code		0F
Start address	Hi	00	Start address Hi		00
Starting addre	ess Lo	00	Starting address Lo		00
Number of co	Number of coils Hi		Number of coils Hi		00
Number of coils Lo		02	Number of coils Lo		02
Byte count		01			
Output value		02			

16 (0x10) Write multiple registers

In a remote device, use this function code to write multiple hold registers. The request PDU specifies the address written to the register. Address registers from scratch. Therefore, address register address 1 is 0. Example of function code 16, set the PWM values for channels DO0 and DO1 to 5 and 6, register address 40001:

request		response			
Field Name		hexadecim	Field Name		hexadecimal
		al			
	Transmissio	01		Transmission	01
	n	00	MBAP	identification	00
MBAP	identificatio				
	n				
message	Protocol	00	message	Protocol Logo	00
header	Logo	00	header		00
	length	00		length	00
		06			06
	Unit	01		Unit identifier	01
	identifier				
Function code		ten	Function code		ten
Start register address Hi		00	Start register address Hi		00
Start register address Lo		00	Start register address Lo		00
Number of registers Hi		00	Number of registers Hi		00
Number of registers Lo		02	Number of registers Lo		02
Byte count		04			
Register value	e Hi	00			
Register value Lo		05			
Register value Hi		00			
Register value	e Lo	06			

(5) Description of register addresses for WJ165 (note: addresses are all decimal numbers) Support function codes 01, 05, 15

Address 0X	Address (PC, DCS)	Data content	attri	Data Explanation	
(PLC)			bute		
00001	0000	DO0 output status	Read/	Output status of DO channels 0~1	
			Write	0 indicates that the transistor is	
00002	0001	DO1 output status	Read/	disconnected,	
			Write	1 indicates that the transistor is conducting	
00033	0032	DI0 input status	read-	Level status of DI channels 0-2	
			only	0 represents a low-level input,	
00034	0033	DI1 input status	read-	1 represents a high-level input	
			only		
00035	0034	DI2 input status	read-		
			only		

Support function codes 03, 06, 16

Address 4X	Address (PC, DCS)	Data content	attri	Data Explanation
(PLC)			bute	
forty thousand	0000	DO0 output PWM	Read/	DO output channel 0~1, PWM output
and one			Write	value,
forty thousand	0001	DO1 output PWM	Read/	Integer, range 0~10000
and two			Write	
forty thousand	0008	DO0 and DO1	Read/	Pulse frequency, (default value is 0)
and nine		frequencies	Write	Integer, range 0~1000
				Set to 0, indicating switch output
				Set to 100~1000, indicating PWM output,
				the frequency can only be in the range of
				100Hz~1000Hz.
				The frequency of DO0 and DO1 is the
				same. Cannot be set independently.
				After setting, power off and reset to zero.
				If you need to save, please set the DO
				frequency in the configuration webpage.
40017~40018	0016~0017	DI0 pulse counting	Read/	Long integers (0x0000000~0xFFFFFFF),
			Write	DI channel 0-2 pulse counting, unsigned
40019~40020	0018~0019	DI1 pulse counting	Read/	DI0 low 16 bits 40017, high 16 bits
			Write	40018, the same applies to other channels.
40021~40022	0020~0021	DI2 pulse counting	Read/	
			Write	
forty thousand	0100	DI0 speed	read-	Unsigned integer, range 0~65535
one hundred and			only	revolutions
one				The rotational speed is calculated based on
forty thousand	0101	DI1 speed	read-	the number of pulses set in the
one hundred and			only	configuration webpage.
two				

forty thousand	0102	DI2 speed	read-	
one hundred and			only	
three				
40129~40130	0128~0129	DI0 pulse frequency	read-	Long integers (0x0000000~0xFFFFFFF),
			only	Pulse frequency of DI channel 0-2,
40131~40132	0130~0131	DI1 pulse frequency	read-	unsigned
			only	
40133~40134	0132~0133	DI2 pulse frequency	read-	
			only	
forty thousand	0210	Module Name	read-	High bit: 0x01 Low bit: 0x65
two hundred and			only	
eleven				

Character Protocol Socket Communication

In working modes such as TCP Server, TCP Client, UDP Mode, Web Socket, etc., the following character protocols can be used for communication.

If automatic reporting of count changes is set in the webpage configuration, the module will automatically send a data to the connected device when the switch value changes. The data format is **S** (channel number) (space) (current channel count value) (carriage return). For example, channel 0 receives a pulse and sends S0 0000000001, while channel 1 receives the 1000th pulse and sends S1 000000 1000.

Users can also use the following commands to read data. If it is measuring speed or other situations, to avoid receiving data that is too large to process, automatic reporting can be turned off.

1. Read switch status command

Description: Read back all output channel switch status, switch reset status, and input channel switch status from the module.

Command format: # 01

Response format:>AA, CCC command is valid.

? The **01** (**cr**) command is invalid or an illegal operation.

Parameter description:>delimiter. Hexadecimal is 3EH

AA represents the read DO output switch status, consisting of 2 numbers arranged in the order of DO1~DO0,

Value 0: Output transistor disconnected; Value 1: Output transistor connected

CCC represents the read DI input switch status, consisting of 3 numbers arranged in the order of DI2~DI0,

Value 0: Input low level; Value 1: Input high level

Application example: User command (character format) # 01

Module response (character format)>10, 011

Explanation: The module output switch status is 10, arranged in the order of DO1~DO0

Channel 1: transistor connected Channel 0: transistor disconnected

The input switch status of the module is 011, and the arrangement order is DI2~DI0

Channel 2: Low Level Channel 1: High Level Channel 0: High Level

2. Set transistor output command

Description: Set the status of all output channel transistors. The factory setting for all channels is 00. Command format: **# 011AA**

Parameter description: # delimiter. Hexadecimal is 24H

011 represents the command to set the transistor output

AA output value. Representing the status of the DO output switch, there are 2 numbers arranged in the order of DO1~DO0

Value 0: Output transistor disconnected; Value 1: Output transistor connected

Response format:! The **01 (cr)** command is valid.

? The **01 (cr)** command is invalid or an illegal operation.

Application Example 1: User Command (Character Format) # 01101

Module response (character format)! 01(cr)

Explanation: The module output switch status is 01, arranged in the order of DO1~DO0, indicating that channel 1 is set to be disconnected and channel 0 is set to be connected Channel 1: transistor disconnected Channel 0: transistor connected

3. Read counter data command

Explanation: Reading the data of the counter can read all channels or a single channel. Command format: **# 012** Read channel 0~channel 2 counter data

Response format: ! AAAAAAAAAA, AAAAAAAAA, AAAAAAAAAA (cr)

Command format: # 012N Read channel N counter data

Response format: **! AAAAAAAAAA(cr)**

Application Example 1: User Command (Character Format) # 012

Module response (character format)! 0012345678, 0012345678, 0012345678(cr)

Explanation: The count value for all channels is 12345678.

Application Example 2: User Command (Character Format) # 0120

Module response (character format)! 0012345678(cr)

Explanation: The count value for channel 0 is 12345678.

4. Read input frequency command

Explanation: The frequency of the input can be read for all channels or for a single channel. Command format: **# 013** Read Channel 0~Channel 2 Input Frequency

Response format:! AAAAA,AAAAA,AAAAA (cr)

Command format: # 013N read channel N input frequency

Response format:! AAAAA (cr)

Application Example 1: User Command (Character Format) # 013

Module response (character format)! 00100,00100,00100 (cr)

Explanation: The input frequency value for all channels is 100Hz.

Application Example 2: User Command (Character Format) # 0130

Module response (character format)! 00100 (cr)

Explanation: The input frequency value for channel 0 is 100Hz.

5. Read and output PWM commands

Explanation: The PWM output can be read from all channels or from a single channel. Command format: **# 014** Read PWM values for channels 0 to 7 Response format: **! AAA.AA, AAA.AA(cr)** Command format: **# 014N** Read PWM value of channel N Response format: **! AAA.AA (cr)**

Application Example 1: User Command (Character Format) # 014 Module response (character format)! 050.00,050.00,050.00,050.00,050.00,050.00,050.00(cr) Explanation: The PWM value for all channels is 50%. Application Example 2: User Command (Character Format) # 0140 Module response (character format)! 050.00(cr) Explanation: The PWM value for channel 0 is 50%.

6. Set PWM command

Explanation: The PWM value for output can only be set for a single channel. The factory setting for all channels is 050.00.

Command format: # 015NAAA AA sets the PWM value for channel N

Response format:! 01 (cr) indicates successful setting

Application Example 1: User Command (Character Format) # 0150050.00

Module response (character format)! 01(cr)

Explanation: Set the PWM value for channel 0 to 50%.

7. Read the frequency command of PWM

Explanation: Read the PWM frequency of the output. Command format: **# 016** Read PWM frequency Response format: **! AAAAA** (cr) AAAAA represents the output PWM frequency Application example: User command (character format) **# 016** Module response (character format) **! 01000 (cr)** Explanation: The PWM frequency is 1KHz

Explanation: The PWM frequency is 1KHz.

8. Set PWM frequency command

Explanation: Set the PWM frequency for DO output. Set to 00000, indicating switch output; Set to 00100~01000, indicating PWM output, with a frequency range of only 100Hz~1000Hz. The factory setting is 00000. Command format: **# 017AAAAA** represents setting PWM frequency, AAAAA represents frequency value. Response format:! **01 (cr)** indicates successful setting Application example: User command (character format) **# 01700100** Module response (character format)! **01(cr)** Explanation: Set the PWM frequency to 100Hz.

9. Read DI input speed command

Explanation: Reading the speed of DI input can read all DIs or a single DI' Command format: **# 018** Read DI0~DI2 input speed.

Response format: ! AAAAA,AAAAA,AAAAA (cr)

Command format: # 018N Read DI Channel N Input Speed

Response format:! AAAAA (cr)

Application Example 1: User Command (Character Format) # 018

Module response (character format)! 01000,01000,01000 (cr)

Explanation: The input speed value for all DI channels is 1000 revolutions per minute.

Application Example 2: User Command (Character Format) # 0180

Module response (character format)! 01000(cr)

Explanation: The input speed value of DI0 is 1000 revolutions per minute.

WAYJUN TECHNOLOGY

10. Modify the numerical command of DI counter

Explanation: You can modify the value of the DI counter and reset it to zero to start counting again.

Command format: **\$011N (data)** Modify the count value of channel N

Response format:! 01 (cr) indicates successful setting

Application example 1: User command (character format) **\$0112+0**

Module response (character format)! **01(cr)**

Explanation: Set the count value of channel 2 to 0.

Application Example 2: User Command (Character Format) **\$0112+1000** Module response (character format)! **01(cr)**

Explanation: Set the count value of channel 2 to 1000.

Operations and settings on web pages

If the module is already connected to the local wifi, you can enter the module IP in the computer or mobile browser, for example: 192.168.0.7, to open the module webpage (provided that the computer IP or mobile IP is in the same network segment as the module, login to the webpage should be based on the current module IP address), enter the account wifi 8 password 12345678, and enter the module configuration interface. In the configuration interface, you can set "Work Mode" to 4, which is websocket. After saving, wait for 10 seconds, and then enter 192.168.0.7/w to directly enter websocket. If your IP is not 192.168.0.7, you can add/w after your actual IP to enter websocket. It is recommended to use Google Chrome browser or IE10 browser for testing. The Websocket web interface is as follows:

← → × ① 192.168.0.7/w

Websocket	
Websocket Wifi Config	
Connect to Websocket	
Websocket is not connected	
□ Send as HEX Add nothing □ Send cyclic 1000 ms Stop	
Send: Send	

Send count: 0	Reset	
Recv count: 0	Reset	
 Receive: C Recei	ve as HEX	

Clear

After clicking connect to websocket, if the connection is successful, a green "Connected" message will appear, and then you can send a character protocol command to read the data.

Common problems with WJ165

1 How to determine the status of a module based on lighting

The **light** is on **twice** for **1 second**: the module is waiting for the configured AP mode and can be connected to the module's WiFi 8 network settings parameters using a mobile phone.

The **light** is on **once** every **1** second: the module is currently connected to WiFi. If it cannot be connected for a long time, please reset the WiFi parameters of the module.

The light is on once every 5 seconds: the module has been connected to WiFi and is working normally.

2. Cross network segment issues

If the IP of the device and the communicating PC are not in the same network segment and are directly connected via Ethernet or under the same sub router, then the two cannot communicate at all.

give an example:

Device IP: 192.168.0.7

Subnet mask: 255.255.255.0

PC's IP: 192.168.1.100

Subnet mask: 255.255.255.0

Due to the device's IP being 192.168.0.7, it is unable to log in to the device's webpage or ping it on the PC.

If you want the two to communicate, you need to set the subnet mask of the device and PC, as well as the subnet mask on the router, to 255.255.0.0, so that you can log in to the module webpage.

3. The device can ping, but the webpage cannot be opened

There may be several reasons for this:

1) The device has set a static IP address that conflicts with the IP addresses of existing devices in the network

2) The HTTP server port has been modified (default should be 80)

3) Other reasons

Solution: Reset the device to an unused IP address; Restore factory settings or enter the correct port when opening the browser.

4. Every once in a while, there is a disconnection and reconnection

Every once in a while, there will be a phenomenon of disconnection and reconnection

Reason: There is an issue of IP address conflict between the serial server and other devices

5. Communication is abnormal, network connection cannot be established, or search cannot be found

The firewall of the current computer needs to be turned off (in the Windows firewall settings)

Three local ports must not conflict, meaning they must be set to different values. Default values are 23, 26, and 29

Having illegal MAC addresses, such as full FF MAC addresses, may result in inability to connect to the target IP address or duplicate MAC addresses.

Illegal IP addresses, such as network segments that are not in the same network segment as the router, may not be able to access the external network.

6. Hardware problem search

Poor power supply from the power adapter or poor contact of the plug

If the power light and network port light are not on, it means there is no power supply or the hardware is broken

7. MODBUS TCP connection cannot be established

The working mode should be set to Modbus TCP, and the port number can only be 502, not any other numerical value.

Dimensions: (Unit: mm)

Can be installed on standard DIN35 rails

guarantee:

Within two years from the date of sale, if the user complies with the storage, transportation, and usage requirements and the product quality is lower than the technical specifications, it can be returned to the factory for free repair. If damage is caused due to violation of operating regulations and requirements, device fees and maintenance fees shall be paid.

Copyright:

Copyright © 2024 Shenzhen Weijunrui Technology Co., Ltd.

Without permission, no part of this manual may be copied, distributed, translated, or transmitted. This manual is subject to modification and update without prior notice.

Trademark:

The other trademarks and copyrights mentioned in this manual belong to their respective owners.

Version number: V1.3 Date: March 2024